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ABSTRACT 

 
GM-1111 PRESERVES PHAGOCYTIC FUNCTION OF 

MACROPHAGES EXPOSED TO PROLONGED HYPEROXIA VIA 

INTERRUPTION OF HMGB1-MEDIATED SIGNALING 

 

                                                                                  Lee-Anne Daley 

 

 

 
 Supraphysiological levels of oxygen (i.e. hyperoxia) are used to 

treat patients with respiratory distress. Prolonged exposure to hyperoxia 

can impair alveolar macrophage functions and increase susceptibility to 

ventilator-associated pneumonia (VAP). Hyperoxia-induced alveolar 

macrophage dysfunction is, in part, mediated by high airway levels of the 

pro-inflammatory mediator, high mobility group box-1 (HMGB1). An early 

generation glycosaminoglycan (GAG), 2-O, 3-O desulfated heparin 

(ODSH), attenuates hyperoxia-compromised innate immunity by 

preventing the binding of HMGB1 with receptors that activate pro-

inflammatory pathways.  In this study, we investigated whether the next 

generation GAG, GM-1111, can attenuate hyperoxia-compromised 

macrophage function. GM-1111 (100μM) prevented hyperoxia-induced 

(95% O2 for 24 h) dysfunction of phagocytosis in RAW 264.7 

macrophages GM-1111 (0.1-100μM) had no significant effect on the 

extracellular accumulation of HMGB1 in cultured macrophages produced 

by hyperoxia. GM-1111 significantly decreased HMGB1-mediated 

phagocytic dysfunction in RAW 264.7 cells. Localized surface plasmon 
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resonance data indicated that GM-1111 had a high binding affinity (KD = 

3.77x10-8M) to HMGB1. GM-1111 also significantly decreased NF-κB/AP-

1 activation and the extracellular accumulation of TNF-α from hyperoxia-

compromised macrophages. Overall, our results indicate that GM-1111 

attenuates hyperoxia-compromised macrophage function by inhibiting 

HMGB1-mediated impairment of macrophage phagocytosis and 

downstream pro-inflammatory responses. Thus, GM-1111 may serve as a 

potential novel treatment for VAP.  
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Introduction: 

Mechanical ventilation (MV) and noninvasive oxygen therapy are life-

saving interventions often used to treat trauma patients, pre-term 

neonates and individuals in respiratory distress (Koenig and Truwit, 2006; 

Vincent et al., 2010; McGrath and Asmar, 2011). High-flow nasal cannulas 

are one non-invasive method of oxygen supplementation with a higher 

patient comfort level than conventional oxygen therapy which has been 

shown to reduce the rate of intubation (Schwabbauer et al., 2014; Zhao 

et al., 2017). Noninvasive oxygen delivery is becoming more common and 

use in patients experiencing respiratory failure has increased 30% (Hill, 

2013). During oxygen therapy, patients are supplied with 

supraphysiological levels of oxygen (25-99%) also known as hyperoxia 

(Kennedy and Nelson, 2013). Although invasive MV and noninvasive 

means of oxygen therapy can improve patient outcomes, they may also 

adversely increase patients’ susceptibility to respiratory infections known 

as hospital-acquired (HAP) and ventilator associated pneumonia (VAP). 

HAP is pneumonia occurring 48 hours or more after hospital admission 

and accounts for 25% of all ICU infections (American Thoracic Society and 

Infectious Diseases Society of America, 2005). VAP occurs within 48-72 

hours of MV in 9-27% of patients and accounts for approximately 86 % of 

nosocomial pneumonias with an incidence rate of 5-10 per thousand 

hospital admissions (American Thoracic Society and Infectious Diseases 
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Society of America, 2005; Koenig and Truwit, 2006; Heredia-Rodríguez et 

al., 2016; Timsit et al., 2017). In addition, these oxygen therapy 

associated conditions can increase the duration of hospital stays and cost 

of care by 40,000 USD (Rello et al., 2002; American Thoracic Society and 

Infectious Diseases Society of America, 2005; Six et al., 2016; Timsit et al., 

2017). Current treatment for these pulmonary infections involves 

prophylactic measures, palliative care and broad-spectrum antibiotics, 

but with the rise of multidrug resistant strains of bacteria and the lack of 

new antibiotics being developed, other novel therapies are urgently 

needed (American Thoracic Society and Infectious Diseases Society of 

America, 2005; Vincent et al., 2010; Kalanuria et al., 2014; Timsit et al., 

2017). 

Alveolar macrophages are the first line of defense against invading 

pathogens in the lung (Nicod, 2005; Pinkerton et al., 2014). Our lab and 

others have demonstrated that prolonged exposure to hyperoxia induces 

oxidative stress which can impair the ability of alveolar macrophages to 

phagocytose and kill bacteria (O’Reilly et al., 2003; Morrow et al., 2007; 

Patel et al., 2016). Furthermore, we have shown in laboratory models 

simulating VAP in mice and in cell culture, that the presence of the potent 

DAMP molecule, high-mobility group box-1 (HMGB1), mediates VAP 

pathogenesis in part by inducing alveolar macrophage dysfunction (Patel 

et al., 2013, 2016; Entezari et al., 2014; Sitapara et al., 2014; Wang et al., 
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2015). HMGB1’s role in macrophage function has also been 

demonstrated by Zettel and colleagues, who found that increased levels 

of HMGB1 in culture media led to decreased clearance of E. coli by 

murine peritoneal macrophages as well as human monocyte-derived 

macrophages (Zettel et al., 2017).  Moreover, VAP patients with lung 

infections have significantly higher levels of HMGB1 (17.4 ng/mL) in the 

airways when compared to healthy volunteers (1.7 ng/mL) (van Zoelen et 

al., 2008). HMGB1 is a nuclear protein that can be actively or passively 

released from cells into the extracellular (Stros, 2010; Yang et al., 2014; 

Wang et al., 2019). HMGB1 becomes acetylated after which, it 

translocates from the nucleus to the cytoplasm, eventually leaving the 

cell (Yang et al., 2014; Wang et al., 2019). Once extracellular, HMGB1 acts 

as a ligand to receptors such as RAGE and promotes the release of 

proinflammatory cytokines, driving an inflammatory cascade which 

results in cellular damage and dysfunction (Wang et al., 2004; Lu, Wang, 

et al., 2014; Wang et al., 2019; Paudel et al., 2019). 

Extracellular HMGB1’s proinflammatory activities have been shown to 

promote lung injury and exacerbate the pathogenesis of VAP. This has 

been demonstrated through the use of HMGB1 antibodies ameliorating 

bacterial load, markers of lung injury, leukocyte infiltration, and cytokine 

(Patel et al., 2013; Ming et al., 2016; Liming et al., 2018). Our group has 

found that mitigating the release and extracellular accumulation of 
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HMGB1 from macrophages can attenuate hyperoxia-compromised 

macrophage functions (Patel et al., 2013, 2016; Entezari et al., 2014; 

Sitapara et al., 2014; Wang et al., 2015). 

Currently, prophylactic measures of VAP prevention include patient 

hygiene, sterility of tools used for intubation and administration of 

antibiotics. With the rise of multidrug resistant bacteria, it is important to 

find other avenues of improving patient outcomes with modulation of 

inflammatory mediators. Glycosaminoglycans (GAG) are sulphated or 

non-sulphated chains of polysaccharides often found in the upper airway 

and extracellular matrix (Souza-Fernandes et al., 2006; Taylor and Gallo, 

2006). One notable GAG, ODSH (2-O, 3-O Desulfated Heparin), is a 

modified non-coagulant heparin that has been shown to reduce 

extracellular HMGB1 accumulation and its interaction  with cell surface 

receptors (TLR2 and TLR4) responsible for innate immune activation 

(Griffin et al., 2014; Sharma et al., 2014; Zheng et al., 2017).  Despite 

ODSH’s remarkable therapeutic potential, its clinical use was hampered 

by the limited sustainability of ODSH derived from animal sources 

(porcine) and susceptibility to disease contamination and population 

fluctuations (Jeske et al., 2019; Kouta et al., 2019; Vilanova et al., 2019). 

Thus, new treatments are urgently needed to mitigate the adverse 

morbidities associated with mechanical ventilation.  A class of sulphated 

GAG derived from hyaluronic acid (HA) in lieu of animal intestine may be 
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more accessible and sustainable for global clinical treatment. HA is also 

abundant in the extracellular matrix of the lung (Souza-Fernandes et al., 

2006). Multiple studies have shown the efficiency of HA in attenuating 

severe inflammation and injury as judged by a reduction of histological 

scores, secretion of pro-inflammatory cytokines (TNF-α and IL-1β), and 

infiltration of macrophages and eosinophils (Johnson et al., 2018; Shi et 

al., 2019). Furthermore, in a mouse model of LPS-induced ALI, 

pretreatment with HA reduced production of inflammatory cytokines 

(such as TNF-α, IL-6 and INF-β) and attenuated the airway excessive 

infiltration of leukocytes (Xu et al., 2015). While high molecular weight 

(HMW) hyaluronans have been shown to mitigate inflammation, they are 

prone to degradation into smaller fragments exhibiting proinflammatory 

properties (Turino and Cantor, 2003; Jiang et al., 2005; Xu et al., 2015; 

Johnson et al., 2018). Thus, HA was structurally modified to generate a 

class of stable hyaluronan, GM-1111, which has been shown to interfere 

with HMGB1 binding to cell surface receptors responsible for 

macrophage activation (e.g., TLR4) or pyroptosis (RAGE) (Zhang et al., 

2011; Alt et al., 2018). GM-1111’s ability to inhibit binding of HMGB1 to 

RAGE may play an important role in mitigating inflammation as 

demonstrated by it having efficacious effects in murine models of bladder 

cystitis, rhinosinusitis, and rosacea (Oottamasathien et al., 2011; Zhang et 

al., 2011; Alt et al., 2018). However, it is unknown whether GM-1111 
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plays a protective role in lung diseases characterized in part by 

inflammation such as VAP. Thus, the purpose of this study was to 

determine if GM-1111 could ameliorate hyperoxia-compromised 

macrophage functions mediated by HMGB1 and other comorbidities 

occurring in VAP. 

Methods and Materials: 

1.Cell Culture and Reagents 

Murine macrophage-like RAW 264.7 cells (ATCC TIB-71, American Type 

Culture Collection, Manassas, VA, USA) were cultured in high glucose 

Dulbecco's Modified Eagle Medium (DMEM) with L-glutamine (American 

Type Culture Collection (ATCC) 30-2002, Manassas, VA, USA) 

supplemented with 10% fetal bovine serum (Atlanta Biologicals, Flowery 

Branch, GA, USA). RAW-Blue cells (RAW 264.7 macrophages with a 

chromosomal integration of NF-kB/AP-1 – induced  secreted embryonic 

alkaline phosphatase) reporter gene (raw-sp, InvivoGen, San Diego, CA, 

USA) were cultured in high glucose DMEM with L-glutamine and 10% 

heat-inactivated fetal bovine serum supplemented with Normocin 

(InvivoGen, San Diego, CA, USA, 50mg/mL) and Zeocin (InvivoGen, San 

Diego, CA, USA, 100 mg/mL) Cells were maintained at 37°C and 5% CO2 

and subcultured after reaching 80-90% confluency. Cells were 

subcultured by scraping, placed in a falcon tube and centrifuged at 850 

RPM for 5 minutes at 4˚C, and counted using a Countess II FL automated 
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Cell Counter (ThermoFisher Scientific, Waltham, MA, USA). For all 

experiments, cells were allowed to adhere for 4-6 hours, followed by 

exposure to room air (21% O2) or hyperoxia (95% O2) in the presence or 

absence of GM-1111 (diluted in minute amounts of PBS) (Glycomira, Salt 

Lake City, UT, USA) (0.1 -100 μM) for 24 hours. Hyperoxic exposure was 

performed in sealed, humidified plexiglass chambers (Billups-Rothenberg 

Inc., DEL Mar, CA, USA) that were flushed with 95% oxygen. The MiniOX 

oxygen analyzer (MSA, Medical Products, Pittsburgh, PA, USA) was used 

to monitor O2 levels. Cells were also exposed to recombinant HMGB1 at 

normoxic conditions in the presence or absence of GM-1111. 

2. Phagocytosis Assay 

RAW 264.7 cells were seeded in 24-well plates, allowed to adhere and 

incubated with GM-1111 (0.1 -100 μM), in the presence or absence of 10 

ug/mL of recombinant HMGB1 (donated by Dr. Haichao Wang of The 

Feinstein Institute of Medical Research, Manhasset, NY)  and exposed to 

hyperoxia for 24 hours. Subsequently, the cells were incubated at 37°C 

for 1 hour with fluorescein isothiocyanate (FITC)- labeled minibeads 

(Polysciences, Warrington, PA, USA) opsonized in fetal bovine serum 

(FBS), at a ratio of 100:1 beads per cell. Cells were immediately placed on 

ice and washed 3 times with ice-cold PBS to stop phagocytosis. Cells were 

then fixed using 3.7% paraformaldehyde (#J61984, Alfa Aesar, Ward Hill, 

MA, USA) Nuclei were stained with spell out DAPI (DAPI, Sigma-Aldrich, 
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St. Louis, MO, USA), and the cytoplasm was stained with rhodamine 

phalloidin (#PHDR1 Cytoskeleton, Inc. Denver, CO, USA). Cells were 

imaged using the EVOS FL Auto Imaging System (ThermoFisher Scientific, 

Waltham, MA, USA). Phagocytic activity was assessed by quantification of 

FITC minibeads per cell for approximately 200 cells per cell using the 

ImageJ Software (National Institutes of Health, Bethseda, MD, USA). The 

phagocytotic activity was reported as a percent relative to control groups 

(room air for hyperoxic studies and 0 µg/mL of GM-1111 in HMGB1 

studies). 

3. NF-κB/AP-1 Activity 

NF-κB/AP-1 activity was determined using RAW-Blue cells following the 

manufacturer’s instructions. Cells were incubated with LPS (1 μg/mL) 

(LPS-RS, # tlrl-rslps, Invivogen, San Diego, CA, USA) and GM-1111 (0.1 -

100 μM) for 24 hours. The absorbance was measured using a FilterMax 

F5 Multi-Mode Microplate Reader (Molecular Devices). 

4.HMGB1 Release 

Raw 264.7 cells were seeded in 6-well plates and allowed to adhere. Cells 

were then placed in 21% O2 or 95% O2 in the presence or absence of GM-

1111 prepared in reduced-serum Opti-MEM media (Gibco/BRL Life 

Technologies Inc., Grand Island, NY) for 24 hours. The cell culture media 

was collected and concentrated in Centricons (Merck Millipore Ltd., 

Carrigtwohill, IRL). 



www.manaraa.com

 

9 
 

5. Western Blot Analysis 

RAW 264.7 cells were seeded in 6-well plates and allowed to adhere. 

Cells were then placed in 21% O2 or 95% O2 in the presence or absence of 

GM-1111 prepared in reduced-serum Opti-MEM media (Gibco/BRL Life 

Technologies Inc., Grand Island, NY) for 24 hours. Subsequently, the 

media was removed, and plates were washed 3x with PBS. Two hundred 

μL of Cell Lysis Buffer (Cell Signaling technologies, Danvers, MA, USA), 1% 

phenylmethylsulfonyl fluoride (PMSF, Sigma Aldrich, St.Louis, MO, 

USA),and 1% protease inhibitor cocktail (Sigma Aldrich, St.Louis, MO, 

USA) was added and plates were shaken, at 4°C for 15 minutes. Cell 

lysates were scraped by hand, sonicated, and then centrifuged at 10,000 

RPM for 10 minutes at 4˚C. Protein concentration of cell lysates was 

determined using the Pierce bicinchoninic acid (BCA) Protein Assay Kit 

(Pierce, Rockford, IL, USA). 10% of concentrated supernatants were 

loaded onto a 12% SDS-PAGE gel (BioRad Laboratories, Hercules, CA, 

USA) and then transferred to polyvinylidene fluoride membranes 

(Millipore, Burlington, MA, USA). Nonspecific binding sites were blocked 

by adding Pierce Clear Milk Blocking Buffer (Pierce, Rockford, IL, USA) 

diluted in Tris-buffered saline, containing 1% Tween 20 (TBST), and 

incubating for 1hr at room temperature. The membranes were washed 

three times with TBST and incubated overnight at 4°C with anti-HMGB1 

rabbit antibody (1:1000 Sigma-Aldrich, St.Louis, MO, USA). The 
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membranes were washed with TBST and incubated for 1 hour with anti-

rabbit (1:1000) horseradish peroxidase-coupled secondary antibody (GE 

Healthcare, Little Chalfont, Buckinghamshore, UK). The membranes were 

washed again 3 times with TBST, and proteins were visualized using the 

Super Signal West Pico chemiluminescent substrate kit (ThermoFisher 

Scientific, Waltham, MA, USA). Images were developed using the 

ChemiDOC MP Imaging System (BioRad) and bands were quantified using 

ImageJ Software (National Institutes of Health, Bethseda, MD, USA). 

6. ELISA Assay 

TNF-α levels in cell culture supernatant, which were obtained as 

previously described, were determined using the TNF-alpha Mouse 

Uncoated Elisa Kit (CAT # 88732422, Invitrogen, Waltham, MA, USA), 

according to manufacturer’s instructions. The absorbance was measured 

at 535 nm using Biotek Synergy LX Multimode Reader (Biotek, Winooski, 

VT, USA). The values obtained from this were converted to indicate the 

percent TNF release compared to the hyperoxia control group. 

7. MTT Assay 

To assess cell viability, the MTT assay was performed. RAW 264.7 cells 

were seeded in 48-well plates, allowed to adhere and treated with GM-

1111 in the presence or absence of hyperoxia for 24 hours. 0.5 mg/mL of 

MTT (EMD Millipore Corp, Burlington, MA, USA) in DMEM without L-

glutamine and phenol red (17-205-CV, Corning, Manassas, VA, USA) was 
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added to the plate which was left to incubate for 2 hours at 37°C. MTT 

reagent was removed and isopropyl alcohol was added to the plates to 

solubilize formazan crystals. After ten minutes the liquid in the wells was 

mixed and 200μL from each plate were transferred to a new 96-well 

plate. The plate was read on the Multiskan EX spectrometer 

(Thermofisher Scientific, Waltham, MA, USA) at 570 nm. 

8. Statistical Analysis 

The data are presented as the standard error of the mean (SEM) of at 

least three experiments. The data were analyzed using Student’s t test or 

ANOVA. The post hoc analyses were conducted using Dunnet’s test. The a 

priori significance level was p <0.05. 
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Figure 1. FR.  RAW 264.7 cells were exposed to room air (21% O2) or 95% O2 and vehicle 

or GM-1111 (0.1, 1, 10 or 100 ug/mL) for 24 hours. Cells were subsequently incubated 

with FITC-labeled latex minibeads (green) for 1 hour and stained with DAPI and 

rhodamine phalloidin to visualize the nuclei (blue) and actin (red) cytoskeleton 

respectively. (A) Shows representative immunofluorescence images of RAW 264.7 cells. 

(B) The bar graph represents the percent phagocytosis that was determined by counting 

beads per cell for at least 200 cells per treatment group. Each value represents the 

mean ± SEM of three independent experiments for each group. #p < 0.05, compared to 

cells exposed to 21% oxygen.  *p < 0.05, compared with cells exposed to 95% O2 control. 
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Figure 2. GM-1111 does not significantly attenuate hyperoxia-induced accumulation of 

extracellular HMGB1. RAW 264.7 cells were exposed to room air (21% O2) or 95% O2 or 

GM-1111 (0.1, 1, 10 or 100 ug/mL) for 24 hours. The levels of extracellular HMGB1 in 

the culture media of RAW 264.7 cells were determined by Western blot analysis. The 

levels of HMGB1 were quantified by measuring the integrated density value of the 

immunoreactive bands on Western blots and expressed as percent HMGB1 relative to 

the 95% O2 control group. Each value represents the mean ± SEM of three independent 

experiments. #p < 0.05 compared to cells exposed to 21% O2. 
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Figure 3. GM-1111 restores the phagocytic ability of HMGB1- compromised 

macrophages. RAW 264.7 cells were cultured in media or in the presence of 

recombinant HMGB1 (10 µg/mL) or 100 μg/mL of GM-1111 for 24 hrs. Cells were 

subsequently incubated with FITC-labeled latex minibeads (green) for 1 hour and 

stained with DAPI and rhodamine phalloidin to visualize the nuclei (blue) and actin (red) 

cytoskeleton respectively. (A) Shows representative immunofluorescence images of 

RAW 264.7 cells. (B). The bar graph represents the percent phagocytosis as determined 

by counting the beads per cell for at least 200 cells per treatment group. Each value 

represents the mean ± SEM of three independent experiments for each group. #p < 

0.05, compared to control group. *p <0.05, compared to recombinant HMGB1 treated 

control group. 
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Figure 4. GM-1111 significantly decreases the secretion of TNF-α in macrophages 

exposed to prolonged hyperoxia. RAW 264.7 cells were exposed to 95% O2) or GM-

1111 (0.1, 1, 10 or 100 ug/mL) for 24 hours. The TNF-α levels in the supernatants were 

determined using ELISA and reported as a percent relative to the 95% O2 control group. 

The graph and values represent the mean ± SEM from three independent experiments. 

*p < 0.05, compared to 95% oxygen control group. 
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Figure 5. GM-1111 significantly attenuates the activation of NF-κβ/Ap-1 in RAW 264.7 

macrophages. The NF-κβ/Ap-1 reporter RAW-Blue macrophages were exposed to room 

air (21% O2) or 95% O2 or LPS (1 μg/mL) and GM-1111 (0.1, 1, 10 and 100 ug/mL) for 24 

hours. Cell supernatant was used to determine the level of secreted embryonic alkaline 

phosphatase (SEAP) reporter using the Quantiblue Assay. The graph and values 

represent the mean ± SEM from one representative experiment repeated in triplicate.  

#p < 0.05, compared to 21% oxygen group.  *p < 0.05, compared exposed to 95% O2 + 

LPS control group. 
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Supplementary Figures 

 

Figure S1 GM-1111 is not cytotoxic to macrophages exposed to Room Air or 

Hyperoxia 

RAW 264.7 cells were exposed to room air (21% O2) or 95% O2 and incubated with 

vehicle or GM-1111 (0.01, 0.1, 1, 10, 50 and 100 ug/mL) for 24 hours. Cell viability was 

determined using the MTT assay. (A) The bar graph shows the representative values of 

absorbance at 570 nm for cells cultured in Room Air. (B) The bar graph shows the 

representative values of absorbance at 570 nm for cells cultured in hyperoxia. The graph 

and values represent the mean ± SEM from three independent experiments. 
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Results 

1 GM-1111 preserves the phagocytic function of macrophages exposed 

to hyperoxia 

Prolonged exposure to hyperoxia can impair macrophage phagocytosis, 

resulting in impaired innate immune functions and clearance of gram-

negative bacterial airway infections (O’Reilly et al., 2003; Morrow et al., 

2007; Patel et al., 2013, 2016; Wang et al., 2015). Previous studies 

indicate that glycosaminoglycans (GAGs), such as hyaluronic acid, 

increase bacterial clearance (Håkansson et al., 1980; Ahlgren and 

Jarstrand, 1984; Liu et al., 2019). Therefore, we determined the effect of 

the next generation GAG, GM-1111, on hyperoxia-compromised 

macrophage phagocytic function.  As demonstrated in Figure 1B, there 

was a significant decrease in the phagocytic activity of hyperoxia-exposed 

macrophages (76.81 ± 3.54%, p<0.05) compared to macrophages 

exposed to normoxic conditions (100 ± 0%). The incubation of RAW 264.7 

macrophages with GM-1111, at 0.1 (77.8 ± 2.68%), 1 (80.95 ± 5.72%) or  

10 μg/ml (83.97 ± 3.50%) did not significantly increase phagocytic 

activity, whereas GM-1111, at 100 μg/ml, significantly increased 

phagocytosis (101.75 ± 4.50%, p<0.05) compared to 95% O2 control. 

These results indicate that GM-1111 protects macrophages against 

hyperoxia - mediated phagocytic dysfunction. 
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2 GM-1111 does not significantly attenuate hyperoxia-induced 

accumulation of extracellular HMGB1 

Previously, we have reported that prolonged exposure to hyperoxia 

induces the excretion of HMGB1 from macrophages into the extracellular 

environment and produces hyperoxia-impaired macrophage functions 

(Patel et al., 2013; Entezari et al., 2014; Wang et al., 2015). Thus, we 

conducted experiments to determine if GM-1111 affects the 

accumulation of extracellular HMGB1. As shown Figure 2, macrophages 

exposed to hyperoxia (100 ± 0.0034%, p<0.05) released significantly 

greater levels of HMGB1 when compared to macrophages that were 

exposed to normoxic conditions (8.09 ± 2.50%). GM-1111, at 0.1 (116.5 ± 

25.17%), 1 (103.8 ± 15.45 %), 10 (140.6 ± 24.18 %), or 100 µg/ml (91.65 ± 

5.78 %) had no significant effect on extracellular HMGB1 levels compared 

to hyperoxic controls. Thus, GM-1111 did not significantly decrease the 

amount of extracellular HMGB1, suggesting that GM-1111’s protective 

effect on phagocytic functions is due to a different molecular mechanism. 

3 GM-1111 protects macrophage phagocytosis that was compromised 

by recombinant HMGB1 (rHMGB1) 

Extracellular HMGB1 bind to receptors, such as TLRs and RAGE, activating 

downstream pathways, which can impair macrophage phagocytosis 

(Entezari et al., 2012; Patel et al., 2013; Sharma et al., 2014; Wang et al., 

2019).  GM-1111 has been shown to inhibit the binding of various ligands 
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to RAGE (Zhang et al., 2011). Therefore, we determined if GM-1111 

affects the impairment of RAW 264.7 cells produced by extracellular 

HMGB1. As shown in Figure 3B, the phagocytic function of macrophages 

was significantly decreased following incubation with rHMGB1 (74.32 ± 

6.64%, p <0.05) compared to the control group, 100 ± 0%). The 

incubation of macrophages with 100 ug/mL of GM-1111 significantly 

enhanced phagocytic activity (103.5 ± 5.16%, p<0.05) compared to cells 

incubated with rHMGB1.   These data suggest that GM-1111 can preserve 

macrophage phagocytosis by decreasing the effect of extracellular 

HMGB1. 

4 GM-1111 significantly decreases the hyperoxia-induced extracellular 

secretion of TNF-α 

Prolonged exposure to hyperoxia can produce lung inflammation and cell 

injury (Davis et al., 1989; O’Reilly et al., 2003; Perng et al., 2010; Patel et 

al., 2013; Entezari et al., 2014; Wang et al., 2019). In addition to 

stimulating HMGB1 release, hyperoxia induces TNF-α expression and 

secretion from alveolar macrophages as well as in murine lung 

homogenate (Tsan et al., 1995; Horinouchi et al., 1996). Furthermore, 

studies have linked HMGB1 signaling to TNF-α secretion in various cells, 

suggesting that HMGB1 plays a major role in mediating hyperoxia-

induced proinflammatory cytokine secretion and lung injury (Abraham et 

al., 2000; Luan et al., 2010; Perng et al., 2010; Zhang et al., 2017). We 
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conducted experiments to ascertain if GM-1111 attenuates the secretion 

of TNF-α from macrophages. Hyperoxic  99.99 ± 0.01%, p<0.05) secreted 

significantly higher levels of TNF compared to macrophages cultured in 

normoxia 48.66 ± 19.78 ,p <0.05). The incubation of hyperoxic 

macrophages with GM-1111, at 0.1 (71.17 ± 6.55%) and 1 ug/ml (69.2 ± 

3.342%) did not significantly decrease TNF-α secretion when compared to 

cells incubated with hyperoxia (99.99 ± 0.01%; Figure 5). However, 10 

(55.65 ± 6.687%) and 100 ug/ml (54.72 ± 8.078%, p<0.05) of GM-111 

significantly decreased TNF-a secretion elicited by hyperoxia (Figure 5). 

5 GM-1111 Reduces NF-κB/AP-1 Activation 

The binding of extracellular HMGB1 to cell membrane receptors, such as 

TLRs and RAGE, induces the downstream activation of NF-κB, inducing 

the release of proinflammatory cytokines and HMGB1 (Luan et al., 2010; 

Yang et al., 2010; Sun et al., 2018; Wang et al., 2019). Additionally, GM-

1111 and other modified hyaluronans inhibit the binding of HMGB1 to 

RAGE and TLRs (Zhang et al., 2011; Savage et al., 2016). Therefore, we 

determined the effect of GM-1111 on the activation of NF-κB. Similar to 

physiological conditions occurring in infectious models of VAP, cells were 

exposed to both hyperoxia and LPS to activate NF-κB.  Following 

incubation with LPS (0.87 ± 0.015 AU, p <0.05), NF-κB/AP-1 activation was  

significantly greater in  macrophages exposed to normoxic (0.035 ± 

0.0021 AU)  and hyperoxic controls (0.054 ± 0.0078 AU) GM-1111, at 0.1 
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(0.384 ± 0.0506 AU), 1 (0.6204 ± 0.0274 AU), 10 (0.556 ± 0.0401AU), and 

100 µg/ml (0.504 ± 0.0209 AU, p<0.05) significantly attenuated NF-κB/AP-

1 activation in macrophages stimulated by both hyperoxia and LPS 

(Figure 5). 

Supplementary Figure- Fig S1 

GM-1111 does not reduce cell viability in normoxia or affect hyperoxia 

induced growth arrest 

Before exploring the effect of GM-1111 on macrophage function, we 

conducted experiments to determine if GM-1111 1) is cytotoxic to 

macrophages and 2) if it increases the viability of macrophages exposed 

to hyperoxia. The results indicated that GM-1111 produced a non-

significant increase in mitochondrial function under room air conditions, 

but it did not significantly affect mitochondrial activity (2.063 ± 0.206 vs 

2.509 ± 0.4649 vs 2.278 ± 0.393 vs 2.215 ± 0.368 vs 2.549 ± 0.283 vs 

2.633 ± 0.268 vs 2.667 ± 0.2121, p<0.05 )(Figure S1A). Our results are 

congruent with previous findings indicating that the viability of 

macrophages is decreased following exposure to hyperoxia compared to 

macrophages exposed to room air (2.063 ± 0.206 vs 1.323 ± 0.214, 

p<0.05) (Shenberger and Dixon, 1999). As seen in Fig S1B, GM-1111, 

under hyperoxic conditions, produced a non-significant increase in 

mitochondrial function but did not  rescue  the growth arrest of 

macrophages that occurs during prolonged hyperoxia (1.323 ± 0.214 vs 
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1.544 ± 0.168 vs 1.604 ± 0.104 vs 1.754 ± 0.0991 vs 1.774 ± 0.153 vs 

1.849 ± 0.175 vs 1.806 ± 0.1127, p<0.05). 

Discussion 

Prolonged exposure to hyperoxia can compromise host innate immune 

functions to clear bacterial infections (O’Reilly et al., 2003; Tateda et al., 

2003; Morrow et al., 2007; Patel et al., 2013). HMGB1 has been 

implicated as a key mediator of pathogenesis in VAP by inducing 

inflammatory lung injury and impairing host defense against bacterial 

infection. In this study, we have shown that treatment with GM-1111 

results in protection against hyperoxia-mediated impairment of 

macrophage phagocytic function. Interestingly, GM-1111 did not 

attenuate hyperoxia- induced accumulation of extracellular HMGB1. 

However, GM-1111 was able to preserve phagocytic function of HMGB1-

compromised macrophages. Moreover, GM-1111 significantly reduced 

hyperoxia-induced TNF-α secretion which is mediated by HMGB1 as well 

as NF-κβ activity in LPS/hyperoxia treated macrophages. These results 

suggest that GM-1111 protects macrophage function by inhibiting 

HMGB1 mediated downstream events and reducing proinflammatory 

cytokine secretion. 

GM-1111 Preserves Macrophage Phagocytic Function 

In this study, we demonstrate that treatment with 100 μg/ml GM-1111 is 

able to ameliorate hyperoxia compromised phagocytosis (Figure 1). Upon 
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treatment with hyperoxia, macrophage phagocytosis was significantly 

impaired, and this compromised function was attenuated in 

macrophages treated with 100 μg/ml of GM-1111. These findings are 

consistent with other studies in which hyaluronic acid improved bacterial 

clearance (Håkansson et al., 1980; Ahlgren and Jarstrand, 1984; Liu et al., 

2019).  In one study, thirty minutes of preincubation of isolated 

neutrophils from human blood with HA (10-500 μg/l) showed a significant 

increase in the rate of phagocytosis of immunoglobulin coated latex 

particles (Håkansson et al., 1980). In the same study, subcutaneous 

injection of 10 mg of HA into healthy patients resulted in an increased 

phagocytic rate that remained for 6 days (Håkansson et al., 1980). In 

another study, thirty-minute preincubation of isolated human monocytes 

with high molecular weight hyaluronic acid (5-150 μg/ml) stimulated the 

uptake of opsinized yeast particles (Ahlgren and Jarstrand, 1984). Both 

studies involve the preincubation of cells with HA and show a stimulation 

of phagocytosis but differ in the cells examined. Unlike these studies, our 

study uses a longer incubation time and introduces a stimulus that 

compromises the cells ability to uptake bacteria. While enhanced 

phagocytosis is demonstrated in these studies at lower doses, the cells 

are in a state of unencumbered ability to clear bacteria. Our study 

examines the clinical condition of VAP and the compromised immune 

defense that results from prolonged hyperoxia. Our group also introduces 
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a novel concept of HA not only enhancing the natural immune response, 

but instead combatting circumstances where the immune response is 

impaired. To our knowledge, few studies have explored HA’s role in 

rescuing the function of injured or compromised immune cells. In one 

recent study using ex vivo human lungs, administration of high molecular 

weight HA (1mg) was able to significantly reduce the levels of E. coli CFU 

in BALF (Liu et al., 2019). The same HA treatment improved the 

phagocytosis of LPS-injured human blood monocytes (Liu et al., 2019). 

LPS is able to induce oxidative stress, inflammation and cell injury 

through its binding to cellular receptors which causes release of HMGB1 

(Wu et al., 2012; Yang et al., 2014; Xu et al., 2015; Jiang et al., 2018). 

These studies suggest that treatment with HA and similarly structured 

molecules can enhance phagocytosis of bacteria and that HA may have 

protective or restorative effects on the function of compromised immune 

cells. 

GM-1111 does not have significant effect on Accumulation of HMGB1 

HMGB1 plays a major role in phagocytic dysfunction and it has been 

shown that as amounts of extracellular HMGB1 increase, there is 

augmented severity of compromised phagocytic ability (Wang et al., 

2004; Friggeri et al., 2010; Entezari et al., 2012). Hyperoxia exposure 

increases the accumulation of HMGB1 in the airways and induces its 

release from macrophages. HMGB1, a nuclear binding protein, can be 
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actively released from innate immune cells upon stimulation from 

bacterial endotoxin (LPS), proinflammatory cytokines or other injurious 

stimuli (Wang et al., 2004). Active release of HMGB1 can occur due to 

post translational modifications such as acetylation, phosphorylation or 

methylation which induce translocation from the nucleus to the 

cytoplasm, and subsequently out of the cell (Wang et al., 2004; Lu, 

Antoine, et al., 2014; Yang et al., 2014). Once in the extracellular milieu, 

HMGB1 can accumulate and interact with extracellular membrane 

receptors such as RAGE and TLR4 (Wang et al., 2004; Yang et al., 2010; 

Deng et al., 2013). Ligation of HMGB1 to these receptors initiates 

downstream events which mediate chemotaxis of neutrophils and 

macrophages as well as the release of proinflammatory cytokines 

potentiating a cycle of lung injury and inflammation (Wang et al., 2004; 

Yang et al., 2010; Deng et al., 2013). Our lab has previously found 

attenuation of extracellular HMGB1 levels to correlate with increased 

phagocytic function of RAW 264.7 cells (Patel et al., 2013, 2016; Wang et 

al., 2015). The deleterious effects of extracellular HMGB1 were mitigated 

via inhibition of acetylation, translocation and release (Wang et al., 2015; 

Patel et al., 2016; Zheng et al., 2017). These studies confirm the ability of 

extracellular HMGB1 to directly compromise macrophage function in a 

dose dependent manner. Interestingly, our data indicates that the levels 

of extracellular HMGB1 in GM-1111 treated groups remained as high as 



www.manaraa.com

 

27 
 

hyperoxic controls (Figure 2). This is noteworthy, as it demonstrates that 

GM-1111 is able to preserve macrophage function via a different 

mechanism without attenuating extracellular HMGB1 accumulation. So 

far there are no studies that examine the role of HA on HMGB1 

acetylation. In the future, it would be interesting to investigate whether 

treatment with GM-1111 affects post translational modifications of 

HMGB1. 

GM-1111 Blocks Extracellular HMGB1-Mediated Phagocytic Dysfunction 

As shown in Figure 3, GM-1111 can preserve the phagocytic function of 

macrophages exposed to recombinant HMGB1. Extracellular HMGB1 has 

been implicated in the pathogenesis of various diseases such as CF and 

VAP (Wang et al., 2019). HMGB1 has been found to directly compromise 

macrophage function as demonstrated through mechanism and 

functional studies (Entezari et al., 2012). Macrophages treated with 

recombinant HMGB1 (rHMGB1) (up 1000 ng/ml) exhibited significantly 

reduced phagocytic activity (Entezari et al., 2012). Administration of 

neutralizing HMGB1 antibody markedly reduced CFU loads of P. 

aeuriginosa in the lungs of mice with cystic fibrosis and improved the 

phagocytic activity of alveolar macrophages as well as peritoneal 

macrophages (Entezari et al., 2012). Thus, blocking the effects of 

extracellular HMGB1 on phagocytosis is important to improving innate 

immunity. Our study used similar means to determine phagocytic ability 
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but utilized a higher molecular ratio of rHMGB1 to confirm the 

mechanism by which GM-1111 restores function. 

RECEPTORS INVOLVED IN PHAGOCYTOSIS 

Toll-like Receptor 4 has been implicated to have a major role in 

phagocytosis. Anand and colleagues found that treatment with LPS, a 

TLR4 agonist, increased phagocytosis in J774 macrophages as well as 

peritoneal macrophages from wild type mice (Anand et al., 2007). 

Peritoneal lavage from wild type mice also demonstrated significantly 

higher bacterial yield compared to that of TLR4 mutant mice (Anand et 

al., 2007).  This correlates with other studies showing that treatment with 

LPS or other TLR4 agonists resulted in increased TLR4 expression, 

phagocytosis and bacterial killing of M. tuberculosis, Y. pestis or S. 

pneumoniae in microglia, RAW 264.7 cells, mouse peritoneal cells and 

THP-1 monocytes  (Jain et al., 2008; Ribes et al., 2010; Lv et al., 2017). 

Interestingly, blockage of the TLR4 receptor with blocking antibody 

HTA125 resulted in decreased LPS- enhanced rates of phagocytosis (Lv et 

al., 2017). 

HMGB1 has been shown to bind to TLR4 and initiate downstream action 

resulting in inflammation and phagocytic dysfunction (Yang et al., 2010; 

Entezari et al., 2012; Deng et al., 2013; Wang et al., 2019). The 

significance of TLR4 in mediating hyperoxia induced macrophage 

dysfunction was illustrated when macrophages with dampened TLR4 
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signaling did not demonstrate compromised phagocytosis (Entezari et al., 

2012). In this study, peritoneal macrophages from wild-type mice or mice 

deficient in TLR2 or TLR4 receptors were grown and treated with healthy 

BAL and CF patient BAL which contained high levels of extracellular 

HMGB1 (Entezari et al., 2012). After this treatment, macrophages were 

exposed to GFP expressing P. aeruginosa and internalized PAO1 were 

measured per cell (Entezari et al., 2012).  Wild type macrophages treated 

with BAL from CF patients demonstrated significantly impaired 

phagocytosis compared to those treated with BAL from healthy patients 

(Entezari et al., 2012). TLR2-deficient macrophages showed higher 

phagocytic rates compared to wild-type, but the number of bacteria 

internalized per cell was still significantly lower than that of TLR2-

deficient macrophages treated with healthy BAL. However, TLR4 deficient 

macrophages showed no significant difference in phagocytosis between 

BAL treatments. This suggests that TLR4 is essential to mediating HMGB1 

induced phagocytic dysfunction. While TLR4 is crucial to phagocytosis and 

its interactions with HMGB1 are tied to dysfunction, it is unclear if and 

how GM-1111 interacts with the receptor to enhance phagocytic function 

in conditions of hyperoxia. GM-1111 may solely act by reducing HMGB1’s 

binding affinity to a degree in which phagocytosis is restored or it may 

also bind to TLR4 directly to compete with HMGB1. 
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Previous studies have shown that glycosaminoglycans (GAGs) such as 

hyaluronic acid can improve bacterial clearance via an undetermined 

mechanism, though there is speculation that interactions occur with cell 

surface receptors resulting in activation of receptors involved in 

phagocytosis or enhanced cell metabolism (Håkansson et al., 1980; 

Ahlgren and Jarstrand, 1984; Liu et al., 2019).  Hyaluronan has the ability 

to signal through TLRs and act as a pattern associated molecular pattern  

(Termeer et al., 2002; Chang et al., 2007; NOBLE et al., 2011). LMW HA 

and hyaluronan fragments can induce the secretion of 

chemokines/cytokines and are markers of cell injury (Termeer et al., 

2002; Yamawaki et al., 2009; NOBLE et al., 2011). LMW HA, through a 

TLR4 mediated process, induces the production of TNF-α, stimulating the 

maturation and activation of dendritic cells (Termeer et al., 2002). HMW 

HA demonstrates the ability to inhibit osteoclast differentiation from 

bone marrow derived macrophages (Chang et al., 2007). This anti-

osteogenic activity was determined to be TLR4 dependent as the effect 

was diminished upon treatment with a TLR4 antibody (Chang et al., 

2007). As both HMW and LMW HA interact with TLR4, it is likely that GM-

1111 is also able to bind, affecting phagocytosis and downstream events. 

GM-1111 Suppresses HMGB1- Facilitated Release of Cytokines and 

Inhibits HMGB1 Signaling 
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Hyperoxia has been shown to induce the production of TNF-α mRNA and 

secretion of TNF-α protein in alveolar macrophages and murine lungs 

(Tsan et al., 1995; Horinouchi et al., 1996; Nagato et al., 2012). TNF-α, a 

potent cytokine and early inflammatory mediator, has been linked to 

inducing oxidative stress and inflammation as well as lung edema, 

immune cell chemotaxis and the pathogenesis of various inflammatory 

diseases (Tsan et al., 1995; Schwabe and Brenner, 2006; Malaviya et al., 

2017). In our study, we observed significant TNF-α secretion upon 24 

hours of hyperoxia treatment (data not shown) that was significantly 

reduced with GM-1111 treatment (Figure 4). This attenuation supports 

our hypothesis of GM-1111 interrupting downstream signaling of 

HMGB1. Reduction of TNF-α secretion was dose dependent with only the 

higher doses showing significant effect.  These results correlate with 

other studies exploring GM-1111’s efficacy in reducing the production 

and release of inflammatory cytokines such as IL-8, TNF-α, IL-1β and IL-6 

(Zhang et al., 2011; Alt et al., 2018). While our study examines 

macrophage inflammatory cytokine production mediated by hyperoxia 

and HMGB1, these studies examine the effects of GM-1111 on LL-37-

induced inflammation in human keratinocytes and the nasal tissue of 

mice in a model of  A. fumigatus induced rhinosinusitis (Zhang et al., 

2011; Alt et al., 2018) 
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HMGB1 has been associated with increased TNF-α secretion suggesting a 

key role in mediating its release  (Luan et al., 2010; Kwak et al., 2015; 

Cheng et al., 2017, 2018) Thus, it is likely that GM-1111’s suppression of 

cytokine secretion occurs through its neutralization of HMGB1. 

While GM-1111 has been proven to bind to HMGB1 (data not shown) and 

a conformational change may be responsible for decreased binding to 

TLR4, it is possible that GM-1111 may also compete for the receptor. As 

we found that GM-1111 was able to inhibit downstream signaling 

stimulated by HMGB1 binding, we wanted to confirm its mechanism by 

determining if it was able to suppress NF-κB activation. As previously 

stated, TLR4 agonists such as HMGB1 and LPS bind to the receptor and 

activate NF-κB, causing increased transcription of proinflammatory 

cytokines. Previous studies have shown GM-1111 and similar compound 

GM-0111 to interrupt the binding of HMGB1 to TLR4 and RAGE (Zhang et 

al., 2011; Savage et al., 2016). These qualities were also demonstrated by 

heparin and ODSH (Rao et al., 2010; Sharma et al., 2014). Zhang et al 

found using a cell surface binding assay that GM-1111 was able to bind 

directly to RAGE (Zhang et al., 2011).  Our findings show that GM-1111 is 

able to suppress NF-κB activation at all concentrations (Fig.5). In this 

study, we demonstrate that GM-1111 reduces activation of NF-κB in cells 

exposed to both hyperoxia and LPS. Both LPS and hyperoxia were used to 

stimulate TLR4 activation and explore GM-1111’s role in an infectious 
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model of VAP. Interestingly, GM-1111 significantly reduced NF-κB 

activation in LPS and hyperoxia stimulated macrophages despite not 

reducing extracellular HMGB1 suggesting that there is decreased binding 

of HMGB1 to TLR4.  Our results are consistent with a previous study 

demonstrating a similarly structured molecule blocking TLR4 mediated 

signaling (Savage et al., 2016). In that study, Raw 264.7 cells were 

stimulated with LPS and co-cultured with GM-0111. Treatment with GM-

0111 at 500-10,000 μg/ml were able to significantly dampen IL-6 

secretion (Savage et al., 2016). NF-κB activation was also measured using 

Hek-Blue cells treated with LPS or Pam3CsK4 and GM-0111.  In this study, 

300-30,000 μg/ml of GM-0111 was able to reduce TLR4 activation while 

0.1-10 μg/mL of GM-0111 was sufficient to suppress TLR2 activation 

(Savage et al., 2016). This supports that GM-1111 and similarly structured 

compounds are able to inhibit TLR4 signaling and suggests that there may 

be greater specificity for TLR2 (Savage et al., 2016). As GM-1111 has a 

higher specificity for TLR 2 than TLR4, that may be why NF-κB levels were 

not suppressed to the levels of hyperoxic controls.  As previously 

mentioned, there may also be molecular ratio-based effectiveness GM-

1111’s ability to restore HMGB1-mediated phagocytic dysfunction which 

may apply to its effects on NF-κB activation (Figure 6). While GM-1111 

was able to significantly dampen NF-κB activation, the levels do not 

return to hyperoxia control levels. Previous literature has shown LPS 
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stimulation to enhance acetylation of HMGB1 and its subsequent release 

from the cytoplasm (Wu et al., 2012; CHEN et al., 2013; Lu, Antoine, et 

al., 2014; Yang et al., 2014). In combination with hyperoxia, this may 

create an environment in which there is a high amount of HMGB1, where 

GM-1111 can reduce NF-κB activation but not fully suppress it by binding. 

While we have shown that GM-1111 can directly neutralize HMGB1’s 

effects, our data suggests that extracellular HMGB1 levels do not play a 

significant role in NF-κB activation at least not at 24 hours of hyperoxia 

exposure or with this experimental design. These results correlate with 

findings by Wong and colleagues in which cultured human epithelial cells 

were exposed to hyperoxia whereby there was no effect on NF-κB 

activation (Wong et al., 2002). Hyperoxia while causing significant 

increased extracellular HMGB1 accumulation, did not significantly 

activate NF-κB in our study, suggesting that LPS and its binding to PRRs is 

a critical factor to NF-κB activation which may be exacerbated by 

hyperoxic exposure. Thus, we propose that this suppression of NF-κB 

activity is not solely due to binding of HMGB1, but perhaps also due to 

competitive binding of TLR4. This inhibition of NF-κB activity and 

neutralization of HMGB1 is likely the mechanism by which TNF-α 

secretion is reduced. It also possible that extracellular HMGB1 alone or at 

least the amounts released by Raw-Blue cells in 24 hours are not 

sufficient enough to produce the phosphatase needed for the reaction 
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used in the Quantiblue assay. Perhaps use of recombinant HMGB1 or a 

longer hyperoxia treatment time is needed to demonstrate NF-κB 

activation solely from the extracellular HMGB1 accumulated during 

hyperoxic treatment. Assuming that the effect of GM-1111’s 

neutralization of HMGB1 is a negligible factor, GM-1111’s suppression of 

NF-κB activity seems to be strongly dependent on interrupting the 

binding between LPS or LPS/HMGB1 complexes to RAGE and TLR 

receptors. 

Conclusion 

In conclusion, GM-1111 may act via a dual mechanism to return function 

and inhibit downstream pro-inflammatory action by neutralizing HMGB1 

and interrupting its receptor binding respectively. We propose that it 

may have potential applications in improving the host defense of 

immunocompromised individuals such as those with VAP and HMGB1-

mediated conditions such as cystic fibrosis. Administration of this 

compound protects against HMGB1 compromised phagocytic dysfunction 

and this effect may be reproducible in other areas of the body. It may be 

most beneficial to administer treatment when the area is in the early 

stages of pathogenesis and exhibiting high levels of extracellular HMGB1. 

In non-injured lungs, administration of GM-1111 may slightly reduce 

phagocytic function due to potential binding to TLR4 receptors that are 

needed for phagocytosis. Due to this, structural modifications may need 
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to be made to allow for HMGB1 binding but reduce binding to TLR’s. In 

other organ tissues with fewer resident immune cells, GM-1111’s ability 

to bind to these receptors may not pose as issue. GM-1111 has been 

shown to reduce inflammation and protect the function of macrophages 

and may also have efficacy in reducing bacterial load due to potential 

antibacterial properties (Savage et al., 2016). As this molecule is able to 

be nebulized, it may serve as a novel therapy to improve outcome for 

patients with VAP. 
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